Palladium Catalyzed Coupling Reactions

Mechanism:

- $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ is OK for simple substrates.
- $\mathrm{Pd}_{2}(\mathrm{dba})_{3}+4 \mathrm{PR}_{3} \rightarrow$ " $\mathrm{Pd}\left(\mathrm{PR}_{3}\right)_{2}$ " often much more active and can choose PR_{3}. $(\mathrm{dba}=$ dibenzylidene acetone)
- PdCl_{2} or $\mathrm{Pd}(\mathrm{OAc})_{2}+$ several equiv. of PR_{3} are often used $\rightarrow \mathrm{Pd}^{\prime \prime}$ is mysteriously reduced to Pd^{0} before catalysis can begin.
- CsF or KF often added $\rightarrow \mathrm{F}^{-}$coordinates to $\mathrm{ArB}(\mathrm{OH})_{2}$ or ArSnR_{3} to make a better leaving group.
- KOBu often present: (1) often necessary to remove $H X$ formed in the reaction, (2) can do same thing as F^{-}, (3) may help with precatalysis reduction of $\mathrm{Pd}^{\prime \prime}$ to Pd^{0}.

Formed from $\mathrm{RC}_{2} \mathrm{H}$ and Cul

Heck Reaction Mechanism

- Review = Belatskaya Chem. Rev. 2000, 3009.
- Base (e.g. NaOAc) needed to remove HX formed in last step.
- $R^{\prime}=$ EWG ensures
formation of RHC=CHR' instead of RR'C=CH2

Alkene Hydrogenation

Rh or Ir

(Dihydride Intermediate)

- [RhCl($\left.\left.\mathrm{PPh}_{3}\right)_{3}\right]$ (Wilkinson's Catalyst)
- $\left[\{R \mathrm{Rh}(\mathrm{NBD})(\mathrm{m}-\mathrm{Cl})\}_{2}\right]+4 \mathrm{PR}_{3}$ or $\left[\{\mathrm{Ir}(\mathrm{COD})(\mathrm{m}-\mathrm{Cl})\}_{2}\right]+4 \mathrm{PR}_{3}$
- $\left[\operatorname{Ir}(\mathrm{COD})\left(\mathrm{PMePh}_{2}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]$ or $\left[\operatorname{lr}(\mathrm{COD})\left(\mathrm{PCy}_{3}\right)\left(\mathrm{Py}^{2}\right)\right]\left[\mathrm{PF}_{6}\right]$
- (NBD = norbornadiene)
- [Rh(NBD)(bidentate phosphine)][PF ${ }_{6}$]

$-\mathrm{PPh}_{3}$
PR_{3} dissociation,
alkene coordination

$\xlongequal[+\mathrm{PPh}_{3}]{\substack{\text { isomerization, } \\ \mathrm{PR}_{3} \text { coordination }}}$

- Note: Hydrogenation involves 1,2 -insertion, so syn-addition to the alkene is observed.
- Note: Less substituted alkenes are hydrogenated faster.

Rh-Catalyzed Alkene Hydroformylation

